
Genomic Rescue: Restarting failed replication forks

Andrew Pierce Microbiology, Immunology and Molecular Genetics University of Kentucky

MI/BCH/BIO 615

Seigneur M, Bidnenko V, Ehrlich SD, Michel B			
RuvAB acts at arrested replication forks.			
Cell. Oct 30;95(3):419-30 (1998)			
What does the title mean?			
Why is this paper published in Cell?			

Table 1. ruvAB Mutations Suppress the Thermosensitive Phenotype of rep recBTS recCTS Cells				More proof that it really is the ruvAB
Strain	Genotype	Cfu 42°/30°	N ^a	complex responsible for the lethality
JJC 505	∆rep::kan recBTS recCTS	$5.1 imes10^{-6}$	4	the rep $recBC^{TS}$ mutant.
JJC 706	∆rep::kan recBTS recCTS ruvA::Tn10	0.9	8	Genetics logic puzzle:
Mu insertions in <i>ruvA</i> ^b	∆rep::kan recBTS recCTS ruvA::MudX	0.8	3	<i>rep ruvC</i> is alive
Mu insertions in <i>ruvB</i> °	∆rep::kan recBTS recCTS ruvB::MudX	0.8	8	But <i>rep recBC ruvC</i> is dead] In the absence of ruvC cells require the
JJC 821	∆rep::kan recBTS recCTS	$8\times 10^{_{6(d)}}$	5	action of recBC to survive
JJC 820	<i>ruvA</i> ::Tn <i>10</i> [pGB-ruvAB] Δ <i>rep::kan recB</i> TS <i>recC</i> TS Δ <i>ruvABC::cam</i>	0.9	5	Since <i>rep recBC ruvABC</i> is <u>alive</u> And <i>rep recBC ruvAB</i> is <u>alive</u> only when ruvAB is present.
(OD 0.8 to 1 in 2 medium and pla ^a N: number of in ^b Average of the genesis.	s were grown in minimal 24 to 30 hr). These cultu ites were incubated at independent determinat e three <i>ruvA</i> ::MudX ins e eight <i>ruvB</i> ::MudX ins	rres were plated 30° or 42° for 2 to ions. sertions obtained	on minimal o 3 days. I by muta-	But, since recBC uses only DNA double- standed ends as a substrate, the action of ruvAB must result in the formation of DN, double-stranded ends.
^c Average of the eight <i>ruvB</i> ::MudX insertions obtained by muta- genesis. ^d In most of these clones, the <i>ruvAB</i> genes present on the plasmid were, for unknown reasons, inactivated.			RuvAB is a Holliday junction branch- migrator. How could Holliday juction branch-migration make DNA double- stranded ends?	

Table 2. ruvAB I	Mutations Prevent the Formation of Linear	•	S Cells	
Strain	Genotype	% of Linear DNA ^a 30°C	42°C	N
	51			
JJC 40	Wild Type	4.7 ± 0.4	4.4 ± 1.2	2/3
JJC 213	∆rep::kan	2.4 ± 0.9	2.3 ± 0.9	2/3
JJC 330	recBTS recCTS	9.1 ± 3.4	19.1 ± 5.0	3
JJC 505	$\Delta rep::kan recBTS recCTS$	15.3 ± 4.7	47.3 ± 4.5	3
JJC 706	Δ <i>rep::kan recB</i> TS <i>recC</i> TS ruvA::Tn10	4.8 ± 2.0	12.2 ± 1.2	3
JJC 821		14.5 ± 1.6	49.5 ± 2.5	3
JJC 821	∆ <i>rep∷kan recB</i> TS <i>recC</i> TS <i>ruvA</i> ::Tn <i>10</i> [pGB-ruvAB]	14.5 ± 1.6	49.5 ± 2.5	3
JJC 820	Δrep::kan recBTS recCTS	4.6 ± 0.9	8.7 ± 1.2	3
550 820	ΔruvABC::cam	4.0 ± 0.3	0.7 ± 1.2	5
	dependent determinations at each tempera PFGE analysis (see Experimental Procedu			

Table 3. <i>ruvAB</i> and <i>ruvC</i> Mutations Prevent the Formation of Linear DNA in <i>dnaB</i> TS <i>recB</i>				Background : dnaB is the main replicative helicase. Inactivation of dnaB is lethal due to replication failure and chromosome breaks. So this experiment is performed on dying cells	
% of Linear DNA ^a			1 1 50		
Strain	Genotype	30°C	42°C	Ν	Using the <i>dnaB</i> ^{TS} strain shows that the phenotypes being observed in <i>rep</i> strains
JJC 767 JJC 774 JJC 800		29.3 ± 4.3	$\begin{array}{c} 12.6\ \pm\ 1.5\\ 66.7\ \pm\ 3.4\\ 8.6\ \pm\ 2.0\end{array}$	3	are related to a general DNA replication problem, rather than due to some uncharacterized <i>rep</i> weirdness.
JJC 824		17.6 ± 0.1	50.0 ± 2.2	2	There is more linear DNA in the absence of recBCD (recall that recBCD eats
JJC 775	dnaBTS recB::Tn10	18.3 ± 4.2	10.0 ± 3.0	4	linear DNA)
JJC 823	<i>dnaB</i> TS <i>recB</i> ::Tn10 ∆ <i>ruvABC</i> :: <i>cam</i> [pBR-ruvC]		11.3 ± 5.6		Observe : deletion of ruvC suppresses the linear DNA phenotype, just like deletion of ruvABC does.
JJC 822	<i>dnaB</i> TS <i>recB</i> ::Tn <i>10</i> ∆ <i>ruvABC</i> :: <i>cam</i> [pGB-ruvAB] [pBRruvC]	26.4 ± 3.7	61.4 ± 5.8	3	Therefore: ruvC may be directly breaking the chromosome.
	er of independent determir ains, the linear DNA migra				But note that <i>rep recBC^{TS} ruvC</i> is lethal while <i>rep recBC^{TS} ruvABC</i> is fine. So <i>ruvC</i> is lethal only when ruvAB are active.

REPLICATION FORKS CONVERTED TO HOLLIDAY JUNCTIONS BY RUVAB, THEN CUT BY RUVC

 Table 4. Part of the *recB*-Dependent Linear DNA Is *ruvABC*

 Dependent in Strains Proficient for Replicative Helicases

		% of Linear DNA ^a					
Strain	Genotype	30°C	42°C	N			
JJC 40	Wild Type	$4.7~\pm~0.4$	4.4 ± 1.2	2/3			
JJC 315 ^b	<i>recB</i> ::Tn10	$\textbf{25.3}~\pm~\textbf{6.4}$	$39.2~\pm~6.9$	5			
JJC 806	<i>recB</i> ::Tn <i>10</i> ∆ <i>ruvC</i> :: <i>cam</i>	11.7 ± 0.8	15.0 ± 4.5	3			
JJC 813	<i>recB</i> ::Tn10 ∆ <i>ruvABC</i> ::cam	14.9 ± 2.6	20.1 ± 1.2	3			

N, number of independent determinations at each temperature. JJC 40 was tested twice at 30° and three times at 42° .

 $^{\rm a}\,\text{ln}$ all strains, the linear DNA migrated as 3 to 5 megabase molecules.

^bAt 42°C, the amount of linear DNA was higher in the *recB* null mutant than in the *recB*TS *recC*TS strain JJC330 (Table 2), probably because of residual RecBCD activity in the TS mutant.

Mutate recB to keep linear DNA from being degraded (so it can be quantified).

Observe that about half of the linear DNA arises from the action of ruvABC

Conclusion:

Holliday junctions are forming and being extended by RuvAB and cut by RuvC to form double-strand breaks even in cells wild-type for replication proteins so replication forks must fail spontaneously with reasonably high frequency.

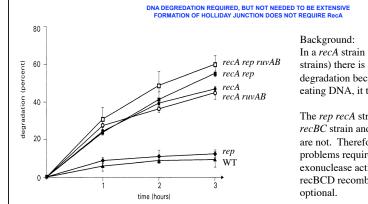
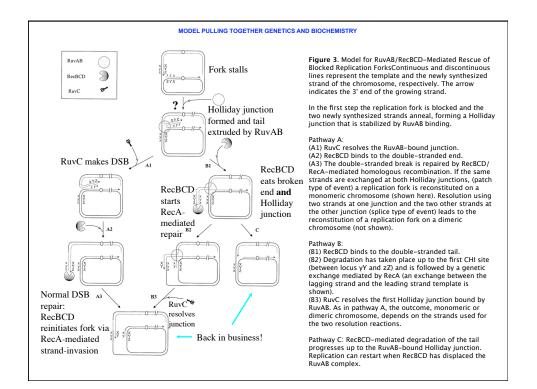


Figure 2. DNA Degradation in recA Strains Is Not Significantly Affected by rep or ruvAB Mutations

DNA degradation was determined as described in Experimental Procedures. Cells containing the plasmid pBRara-recA, carrying the *recA* gene under the control of the *araC* promoter were used. In these cells the *recA* gene is expressed in the presence of arabinose (RecA+) and repressed in the presence of glucose (*recA*). Results are the average of two or three experiments, standard deviations are shown.


JJC744 arabinose (wild-type) (closed triangle); JJC742 arabinose (rep) (closed diamond); JJC744 glucose (recA) (closed circle); JJC742 glucose (recA rep) (closed square); JJC745 glucose (recA ruvAB) (open circle); and JJC743 glucose (recA rep ruvAB) (open square).

DNA degradation was also measured in recA and rep recA strains cells with no plasmid; results were the same as in cells containing pBRara-recA grown in the presence of glucose (data not shown). In a *recA* strain (most laboratory strains) there is a lot of DNA degradation because if recBCD starts eating DNA, it tends not to stop.

The *rep recA* strain is viable but the *rep recBC* strain and *rep recA recD* strains are not. Therefore, replication problems require the recBCD exonuclease activity to live, while the recBCD recombination activity is optional.

BUT: this required exonuclease activity must only be used to degrade small amounts of DNA in *rep* mutants, since there isn't a large increase in the amount of degradation observed between a *recA* strain, and a *recA rep* strain.

Strain	Genotype	Cfu Glucose/ Arabinose	N	
JJC 748	∆ <i>rep::kan ∆recA::cam</i> <i>recD</i> 1013 [pGBara-recA]	4.9 10 ⁻⁴	10	rep recA recD is lethal
JJC 827	∆ <i>rep::kan ∆recA::cam</i> <i>recD</i> 1013 <i>ruvA</i> ::Tn <i>10</i> [pGBara-recA]	1.0	10	<i>rep recA recD ruvA</i> is viable
JJC 825	∆ <i>rep::kan</i> ∆ <i>recA::cam</i> [pGBara-recA]	1.0	5	recA doesn't affect rep strain viability
JJC 826	Δ <i>rep::kan</i> Δ <i>recA::cam</i> <i>ruvA</i> ::TN 10 [pGBara-recA]	1.2	5	recA doesn't affect rep ruvA viability
nose at 3 up to 3 da rich mediu plates we	blonies were grown in LBT med 7° to saturation, i.e., overnigh ays for the <i>ruvA</i> ⁻ strains. The um containing either 0.2% ara re incubated at 37° for 24 h ent determinations.	t for the <i>ruvA</i> ⁺ st se cultures were Ibinose or 1% glu	rains a plated cose a	nd the exonuclease V action of the on recBCD complex. A <i>recD</i> nd mutant is proficient for
recombin	that the double-stranded	is not required l end which rec	but th BCD	s viable, and since the ne exonuclease action is, we is required to eat is created by the ruvA is a Holliday junction branch-

What we learned

- Even in normal cells, replication forks fail with regularity
- Failed forks are converted into Holliday junctions, then processed by recombination machinery

E. coli genetics can be really complicated